10 Introduction to Linear Regression
last update: 2024-12-29
In this tutorial, we introduce the fundamentals of linear regression, guided by the In Depth: Linear Regression chapter of the Python Data Science Handbook by Jake VanderPlas.
10.1 Setup
(ns noj-book.linear-regression-intro
(:require
[tech.v3.dataset :as ds]
[tablecloth.api :as tc]
[tablecloth.column.api :as tcc]
[tech.v3.datatype.datetime :as datetime]
[tech.v3.dataset.modelling :as ds-mod]
[fastmath.ml.regression :as reg]
[scicloj.kindly.v4.kind :as kind]
[fastmath.random :as rand]
[scicloj.tableplot.v1.plotly :as plotly]))10.2 Simple Linear Regression
We begin with the classic straight-line model: for data points \((x, y)\), we assume there is a linear relationship allowing us to predict \(y\) as \[y = ax + b.\] In this formulation, \(a\) is the slope and \(b\) is the intercept, the point where our line would cross the \(y\) axis.
To illustrate, we’ll use Fastmath and Tablecloth to create synthetic data in which the relationship is known to hold with \(a=2\) and \(b=-5\).
For each row in the dataset below, we draw \(x\) uniformly from 0 to 10 and compute \(y = ax + b\) plus an extra random noise term (drawn from a standard Gaussian distribution). This noise is added independently for every row.
(def simple-linear-data
(let [rng (rand/rng 1234)
n 50
a 2
b -5]
(-> {:x (repeatedly n #(rand/frandom rng 0 10))}
tc/dataset
(tc/map-columns :y
[:x]
(fn [x]
(+ (* a x)
b
(rand/grandom rng)))))))simple-linear-data_unnamed [50 2]:
| :x | :y |
|---|---|
| 7.97690344 | 10.27676182 |
| 9.33682251 | 12.55247210 |
| 3.48480940 | 2.78219772 |
| 0.32233775 | -2.10696103 |
| 6.76769972 | 7.79522824 |
| 9.57730865 | 13.66814034 |
| 3.23972511 | 4.12318981 |
| 4.76181126 | 4.28776110 |
| 8.59562969 | 11.43073247 |
| 7.27913380 | 11.00014082 |
| … | … |
| 9.83472061 | 13.89653018 |
| 7.60345840 | 10.31939758 |
| 0.71324766 | -2.12434599 |
| 9.96650028 | 15.69500004 |
| 4.46464539 | 3.11673576 |
| 4.67479134 | 5.70488322 |
| 0.68129003 | -4.50180721 |
| 8.77676392 | 13.14855351 |
| 3.94394875 | 4.45846826 |
| 0.21207690 | -4.78543376 |
| 4.67980385 | 3.94169960 |
Let’s plot these points using Tableplot’s Plotly API.
(-> simple-linear-data
plotly/layer-point)10.2.1 Regression using Fastmath
We can now fit a linear model to the data using the Fastmath library.
(def simple-linear-data-model
(reg/lm
;; ys - a "column" sequence of `y` values:
(simple-linear-data :y)
;; xss - a sequence of "rows", each containing `x` values:
;; (one `x` per row, in our case):
(-> simple-linear-data
(tc/select-columns [:x])
tc/rows)
;; options
{:names ["x"]}))(type simple-linear-data-model)fastmath.ml.regression.LMDatasimple-linear-data-model{:model :ols,
:intercept? true,
:offset? false,
:transformer nil,
:xtxinv
#object[org.apache.commons.math3.linear.BlockRealMatrix 0x15773356 "BlockRealMatrix{{0.0799485475,-0.0116715265},{-0.0116715265,0.0022723575}}"],
:intercept -5.013951299957048,
:beta [2.0313776572955815],
:coefficients
[{:estimate -5.013951299957048,
:stderr 0.3066985108771736,
:t-value -16.348143607273762,
:p-value 2.9857631516674843E-21,
:confidence-interval [-5.630609986038285 -4.397292613875811]}
{:estimate 2.0313776572955815,
:stderr 0.05170644803846648,
:t-value 39.28673761895922,
:p-value 0.0,
:confidence-interval [1.9274148756761498 2.1353404389150135]}],
:offset
(0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0),
:weights
(1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0),
:residuals
{:weighted
(-0.9133902951828023
-1.400189240890926
0.7171850689738104
2.2522005779710943
-0.9385744613364952
-0.7730391812858866
2.5560359006607554
-0.37132459956455044
-1.016286335526102
1.2274223606948027
1.431705716746059
0.4106140552750013
-0.9722144654173288
-0.00864376376902154
0.4829830983425847
0.8235481653906476
1.0001042010852128
-0.14685072150970147
-1.5220360198746938
0.3626714554710073
2.0339249709116896
-0.814564566324202
-1.2480920116124272
0.004605713871298267
0.6649123901396532
-1.5126802164071016
-1.823241893598048
-0.7609465728110054
-0.8854420022800573
-0.49406706529077127
1.172604324905942
1.3638727611992927
-0.532913217275885
1.111692061243109
-0.3825808086401601
-0.23838865252963704
-0.7527910576596278
-1.0428942104294805
-0.24251471782311818
-1.0675502328788422
-0.11214664483804349
1.440729952674464
0.4632253447250392
-0.9386938246879204
1.2225678446937653
-0.871813255549573
0.33358269188962275
1.4607701931260184
-0.2022907379059582
-0.5507980770915166),
:raw
(-0.9133902951828023
-1.400189240890926
0.7171850689738104
2.2522005779710943
-0.9385744613364952
-0.7730391812858866
2.5560359006607554
-0.37132459956455044
-1.016286335526102
1.2274223606948027
1.431705716746059
0.4106140552750013
-0.9722144654173288
-0.00864376376902154
0.4829830983425847
0.8235481653906476
1.0001042010852128
-0.14685072150970147
-1.5220360198746938
0.3626714554710073
2.0339249709116896
-0.814564566324202
-1.2480920116124272
0.004605713871298267
0.6649123901396532
-1.5126802164071016
-1.823241893598048
-0.7609465728110054
-0.8854420022800573
-0.49406706529077127
1.172604324905942
1.3638727611992927
-0.532913217275885
1.111692061243109
-0.3825808086401601
-0.23838865252963704
-0.7527910576596278
-1.0428942104294805
-0.24251471782311818
-1.0675502328788422
-0.11214664483804349
1.440729952674464
0.4632253447250392
-0.9386938246879204
1.2225678446937653
-0.871813255549573
0.33358269188962275
1.4607701931260184
-0.2022907379059582
-0.5507980770915166),
:loocv
(-0.9498015261381599
-1.4897123408316775
0.7364791519329992
2.4286683540984835
-0.9636760496084196
-0.8266176905444703
2.630136647343255
-0.37902591033555666
-1.0666236095220296
1.2659502857634348
1.4716971697325016
0.42508491394572684
-0.9920981195529521
-0.008849622720030868
0.4964617435782756
0.8430037134620346
1.0713054357072833
-0.1503327090944281
-1.6433406680771299
0.3858455957462735
2.0950175791697347
-0.8702902226335034
-1.3035596651146915
0.004720414097183885
0.6827750526799393
-1.5852610696596774
-1.9261966717113073
-0.7799815553322498
-0.903558118454171
-0.5204565696204568
1.2104952751361338
1.4510317255105758
-0.5622007844963817
1.1363239727339187
-0.3936449224109432
-0.24432469977397667
-0.7765625603022648
-1.0786097553659422
-0.24966061838997283
-1.148104071910613
-0.11607358402022609
1.5399902859065124
0.4997122519686498
-0.9588538498490189
1.2481346414976087
-0.9325202160859831
0.3511823278652585
1.4955119129903225
-0.2187163885677346
-0.5623105701072049)},
:fitted
(11.190152119554517
13.9526613365153
2.0650126523964945
-4.359161603369814
8.733802699439359
14.441179518397119
1.567153910197967
4.6590856945701695
12.447018806915962
9.772718459108024
9.02913604780838
10.469593225642388
5.143580161056823
7.853640625609774
9.023022015171334
7.784364722541174
14.60530913597505
7.8160381625283115
-4.465875059181402
-3.109431828630323
9.498526567699743
-3.522120556062981
-0.9794997816527502
2.625843412302104
8.764921110798324
-1.4229766154492482
-2.3739656213018177
2.5917222282601777
5.720406981635469
12.886956001332878
9.95016488921671
-3.110095344529622
-2.214443322519533
3.674818460458688
9.256707471722825
2.626828999787559
1.0301336847137117
10.299564612696965
9.376845500859034
14.964080416135188
10.43154422120388
-3.565075945769995
15.231774694912085
4.055429584387445
4.482315372633323
-3.629993953902906
12.814970822395166
2.997698063632807
-4.583143018814509
4.4924976779376085),
:df {:residual 48, :model 1, :intercept 1},
:observations 50,
:names ["Intercept" "x"],
:cv 1.1113924154551942,
:r-squared 0.9698387836375214,
:adjusted-r-squared 0.9692104249633031,
:sigma2 1.1765564171744207,
:sigma 1.0846918535576917,
:tss 1872.428066085171,
:rss 56.47470802437219,
:regss 1815.9533580607988,
:msreg 1815.9533580607988,
:qt 2.010634757624228,
:f-statistic 1543.447752740946,
:p-value 0.0,
:ll
{:log-likelihood -73.99117383310164,
:aic 153.98234766620328,
:bic 159.7184166824877,
:aic-rss 10.088494345736,
:bic-rss 13.912540356592292},
:analysis #<Delay@7c453542: :not-delivered>,
:decomposition :cholesky,
:augmentation nil,
:hat
(0.03833562060423677
0.06009421919051326
0.026197731339099795
0.07266030202501395
0.026047745279260646
0.06481655288951424
0.02817372502578912
0.020318692102574695
0.04719309937128097
0.030433995317120814
0.027173697013844023
0.03404227766260634
0.020042023811700227
0.02326189008525432
0.027149413645738023
0.023078840295361593
0.06646212391806165
0.023161876119318144
0.07381588647980979
0.06006065776245149
0.029160904837016548
0.06403111842469658
0.042550912694421274
0.024298763524591316
0.02616185589993938
0.0457847950988649
0.0534497746908629
0.02440440083629409
0.02004975197954859
0.050704527274831365
0.03130202241056286
0.06006689087422569
0.05209449724751351
0.021676838720164536
0.028106837255816954
0.024295731253659712
0.030611188148684652
0.033112573624317285
0.02862245801094941
0.07016248875218896
0.033831463164765554
0.06445516841271451
0.07301583481267074
0.02102512824480274
0.02048400545406419
0.06509988683270819
0.05011538047093404
0.023230654040620087
0.07510022805945117
0.020473549009568534),
:effective-dimension 2.0}Printing the model gives a tabular summary: We’ll capture the printed output and display it via Kindly for cleaner formatting.
(kind/code
(with-out-str
(println
simple-linear-data-model)))Residuals:
| :min | :q1 | :median | :q3 | :max |
|-----------+-----------+----------+----------+----------|
| -1.823242 | -0.892429 | -0.22034 | 0.867687 | 2.556036 |
Coefficients:
| :name | :estimate | :stderr | :t-value | :p-value | :confidence-interval |
|-----------+-----------+----------+------------+----------+----------------------|
| Intercept | -5.013951 | 0.306699 | -16.348144 | 0.0 | [-5.63061 -4.397293] |
| x | 2.031378 | 0.051706 | 39.286738 | 0.0 | [1.927415 2.13534] |
F-statistic: 1543.447752740946 on degrees of freedom: {:residual 48, :model 1, :intercept 1}
p-value: 0.0
R2: 0.9698387836375214
Adjusted R2: 0.9692104249633031
Residual standard error: 1.0846918535576917 on 48 degrees of freedom
AIC: 153.98234766620328
As you can see, the estimated coefficients match our intercept \(b\) and slope \(a\) (the coefficient of \(x\)).
10.2.2 Dataset ergonomics
Below are a couple of helper functions that simplify how we use regression with datasets and display model summaries. We have similar ideas under development in the Tablemath library, but it is still in an experimental stage and not part of Noj yet.
(defn lm
"Compute a linear regression model for `dataset`.
The first column marked as target is the target.
All the columns unmarked as target are the features.
The resulting model is of type `fastmath.ml.regression.LMData`,
created via [Fastmath](https://github.com/generateme/fastmath).
See [fastmath.ml.regression.lm](https://generateme.github.io/fastmath/clay/ml.html#lm)
for `options`."
([dataset]
(lm dataset nil))
([dataset options]
(let [inference-column-name (-> dataset
ds-mod/inference-target-column-names
first)
ds-without-target (-> dataset
(tc/drop-columns [inference-column-name]))]
(reg/lm
;; ys
(get dataset inference-column-name)
;; xss
(tc/rows ds-without-target)
;; options
(merge {:names (-> ds-without-target
tc/column-names
vec)}
options)))))(defn summary
"Generate a summary of a linear model."
[lmdata]
(kind/code
(with-out-str
(println
lmdata))))(-> simple-linear-data
(ds-mod/set-inference-target :y)
lm
summary)Residuals:
| :min | :q1 | :median | :q3 | :max |
|-----------+-----------+----------+----------+----------|
| -1.823242 | -0.892429 | -0.22034 | 0.867687 | 2.556036 |
Coefficients:
| :name | :estimate | :stderr | :t-value | :p-value | :confidence-interval |
|-----------+-----------+----------+------------+----------+----------------------|
| Intercept | -5.013951 | 0.306699 | -16.348144 | 0.0 | [-5.63061 -4.397293] |
| :x | 2.031378 | 0.051706 | 39.286738 | 0.0 | [1.927415 2.13534] |
F-statistic: 1543.447752740946 on degrees of freedom: {:residual 48, :model 1, :intercept 1}
p-value: 0.0
R2: 0.9698387836375214
Adjusted R2: 0.9692104249633031
Residual standard error: 1.0846918535576917 on 48 degrees of freedom
AIC: 153.98234766620328
10.2.3 Prediction
Once we have a linear model, we can generate new predictions. For instance, let’s predict \(y\) when \(x=3\):
(simple-linear-data-model [3])1.080181671929696410.2.4 Displaying the regression line
We can visualize the fitted line by adding a smooth layer to our scatter plot. Tableplot makes this convenient:
(-> simple-linear-data
(plotly/layer-point {:=name "data"})
(plotly/layer-smooth {:=name "prediction"}))Alternatively, we can build the regression line explicitly. We’ll obtain predictions and then plot them:
(-> simple-linear-data
(tc/map-columns :prediction
[:x]
simple-linear-data-model)
(plotly/layer-point {:=name "data"})
(plotly/layer-smooth {:=y :prediction
:=name "prediction"}))10.3 Multiple linear regression
We can easily extend these ideas to multiple linear predictors.
(def multiple-linear-data
(let [rng (rand/rng 1234)
n 50
a0 2
a1 -3
b -5]
(-> {:x0 (repeatedly n #(rand/frandom rng 0 10))
:x1 (repeatedly n #(rand/frandom rng 0 10))}
tc/dataset
(tc/map-columns :y
[:x0 :x1]
(fn [x0 x1]
(+ (* a0 x0)
(* a1 x1)
b
(rand/grandom rng)))))))(def multiple-linear-data-model
(-> multiple-linear-data
(ds-mod/set-inference-target :y)
lm))(summary multiple-linear-data-model)Residuals:
| :min | :q1 | :median | :q3 | :max |
|-----------+-----------+----------+----------+----------|
| -2.172344 | -0.717733 | 0.032101 | 0.714545 | 2.011173 |
Coefficients:
| :name | :estimate | :stderr | :t-value | :p-value | :confidence-interval |
|-----------+-----------+----------+------------+----------+-----------------------|
| Intercept | -5.074428 | 0.42848 | -11.842872 | 0.0 | [-5.936418 -4.212439] |
| :x0 | 1.921843 | 0.051446 | 37.356694 | 0.0 | [1.818348 2.025339] |
| :x1 | -2.958076 | 0.048685 | -60.759489 | 0.0 | [-3.056018 -2.860135] |
F-statistic: 2925.9909328276863 on degrees of freedom: {:residual 47, :model 2, :intercept 1}
p-value: 0.0
R2: 0.9920325233963441
Adjusted R2: 0.9916934818387417
Residual standard error: 0.9784374924014486 on 47 degrees of freedom
AIC: 144.62024561182105
Visualizing multiple dimensions is more involved. In the case of two features, we can use a 3D scatterplot and a 3D surface. Let us do that using Tableplot’s Plotly API.
(-> multiple-linear-data
(plotly/layer-point {:=coordinates :3d
:=x :x0
:=y :x1
:=z :y})
(plotly/layer-surface {:=dataset (let [xs (range 11)
ys (range 11)]
(tc/dataset
{:x xs
:y ys
:z (for [y ys]
(for [x xs]
(multiple-linear-data-model
[x y])))}))
:=mark-opacity 0.5}))10.4 Coming soon: Polynomial regression 🛠
10.5 Coming soon: One-hot encoding 🛠
10.6 Coming soon: Regularization 🛠
10.7 Example: Predicting Bicycle Traffic
As in the Python Data Science Handbook, we’ll try predicting the daily number of bicycle trips across the Fremont Bridge in Seattle. The features will include weather, season, day of week, and related factors.
10.7.1 Reading and parsing data
(def column-name-mapping
{"Fremont Bridge Sidewalks, south of N 34th St" :total
"Fremont Bridge Sidewalks, south of N 34th St Cyclist West Sidewalk" :west
"Fremont Bridge Sidewalks, south of N 34th St Cyclist East Sidewalk" :east
"Date" :datetime})(column-name-mapping
"Fremont Bridge Sidewalks, south of N 34th St"):total(def counts
(tc/dataset "data/seattle-bikes-and-weather/Fremont_Bridge_Bicycle_Counter.csv.gz"
{:key-fn column-name-mapping
:parser-fn {"Date" [:local-date-time "MM/dd/yyyy hh:mm:ss a"]}}))countsdata/seattle-bikes-and-weather/Fremont_Bridge_Bicycle_Counter.csv.gz [106608 4]:
| :datetime | :total | :west | :east |
|---|---|---|---|
| 2012-10-02T13:00 | 55 | 7 | 48 |
| 2012-10-02T14:00 | 130 | 55 | 75 |
| 2012-10-02T15:00 | 152 | 81 | 71 |
| 2012-10-02T16:00 | 278 | 167 | 111 |
| 2012-10-02T17:00 | 563 | 393 | 170 |
| 2012-10-02T18:00 | 381 | 236 | 145 |
| 2012-10-02T19:00 | 175 | 104 | 71 |
| 2012-10-02T20:00 | 86 | 51 | 35 |
| 2012-10-02T21:00 | 63 | 35 | 28 |
| 2012-10-02T22:00 | 42 | 27 | 15 |
| … | … | … | … |
| 2024-11-30T13:00 | 147 | 62 | 85 |
| 2024-11-30T14:00 | 154 | 73 | 81 |
| 2024-11-30T15:00 | 118 | 57 | 61 |
| 2024-11-30T16:00 | 88 | 51 | 37 |
| 2024-11-30T17:00 | 46 | 11 | 35 |
| 2024-11-30T18:00 | 46 | 18 | 28 |
| 2024-11-30T19:00 | 69 | 14 | 55 |
| 2024-11-30T20:00 | 18 | 8 | 10 |
| 2024-11-30T21:00 | 49 | 15 | 34 |
| 2024-11-30T22:00 | 14 | 4 | 10 |
| 2024-11-30T23:00 | 10 | 5 | 5 |
(def weather
(tc/dataset "data/seattle-bikes-and-weather/BicycleWeather.csv.gz"
{:key-fn keyword}))weatherdata/seattle-bikes-and-weather/BicycleWeather.csv.gz [1340 26]:
| :STATION | :STATION_NAME | :DATE | :PRCP | :SNWD | :SNOW | :TMAX | :TMIN | :AWND | :WDF2 | :WDF5 | :WSF2 | :WSF5 | :FMTM | :WT14 | :WT01 | :WT17 | :WT05 | :WT02 | :WT22 | :WT04 | :WT13 | :WT16 | :WT08 | :WT18 | :WT03 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20120101 | 0 | 0 | 0 | 128 | 50 | 47 | 100 | 90 | 89 | 112 | -9999 | 1 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20120102 | 109 | 0 | 0 | 106 | 28 | 45 | 180 | 200 | 130 | 179 | -9999 | -9999 | 1 | -9999 | -9999 | -9999 | -9999 | -9999 | 1 | 1 | -9999 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20120103 | 8 | 0 | 0 | 117 | 72 | 23 | 180 | 170 | 54 | 67 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | 1 | -9999 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20120104 | 203 | 0 | 0 | 122 | 56 | 47 | 180 | 190 | 107 | 148 | -9999 | -9999 | 1 | -9999 | -9999 | -9999 | -9999 | -9999 | 1 | 1 | -9999 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20120105 | 13 | 0 | 0 | 89 | 28 | 61 | 200 | 220 | 107 | 165 | -9999 | -9999 | 1 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | 1 | -9999 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20120106 | 25 | 0 | 0 | 44 | 22 | 22 | 180 | 180 | 45 | 63 | -9999 | 1 | 1 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | 1 | -9999 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20120107 | 0 | 0 | 0 | 72 | 28 | 23 | 170 | 180 | 54 | 63 | -9999 | -9999 | 1 | -9999 | -9999 | -9999 | -9999 | -9999 | 1 | 1 | -9999 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20120108 | 0 | 0 | 0 | 100 | 28 | 20 | 160 | 200 | 45 | 63 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20120109 | 43 | 0 | 0 | 94 | 50 | 34 | 200 | 200 | 67 | 89 | -9999 | 1 | 1 | -9999 | -9999 | -9999 | -9999 | -9999 | 1 | 1 | -9999 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20120110 | 10 | 0 | 0 | 61 | 6 | 34 | 20 | 30 | 89 | 107 | -9999 | -9999 | 1 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | 1 | -9999 | -9999 | -9999 |
| … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | … |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20150822 | 0 | 0 | 0 | 267 | 122 | 25 | 20 | 20 | 63 | 76 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | 1 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20150823 | 0 | 0 | 0 | 278 | 139 | 18 | 10 | 10 | 67 | 81 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | 1 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20150824 | 0 | 0 | 0 | 239 | 122 | 23 | 190 | 190 | 54 | 67 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20150825 | 0 | 0 | 0 | 256 | 122 | 34 | 350 | 360 | 63 | 76 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20150826 | 0 | 0 | 0 | 283 | 139 | 17 | 30 | 40 | 58 | 67 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20150827 | 0 | 0 | 0 | 294 | 144 | 21 | 230 | 200 | 45 | 63 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20150828 | 5 | 0 | 0 | 233 | 156 | 26 | 230 | 240 | 81 | 103 | -9999 | -9999 | 1 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20150829 | 325 | 0 | 0 | 222 | 133 | 58 | 210 | 210 | 157 | 206 | -9999 | -9999 | 1 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20150830 | 102 | 0 | 0 | 200 | 128 | 47 | 200 | 200 | 89 | 112 | -9999 | -9999 | 1 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20150831 | 0 | 0 | 0 | 189 | 161 | 58 | 210 | 210 | 112 | 134 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 |
| GHCND:USW00024233 | SEATTLE TACOMA INTERNATIONAL AIRPORT WA US | 20150901 | 58 | 0 | 0 | 194 | 139 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 | -9999 |
10.7.2 Preprocessing
The bike counts come in hourly data, but our weather information is daily. We’ll need to aggregate the hourly counts into daily totals before combining the datasets.
In the Python handbook, one does:
daily = counts.resample('d').sum()Since Tablecloth’s time series features are still evolving, we’ll be a bit more explicit:
(def daily-totals
(-> counts
(tc/group-by (fn [{:keys [datetime]}]
{:date (datetime/local-date-time->local-date
datetime)}))
(tc/aggregate-columns [:total :west :east]
tcc/sum)))daily-totals_unnamed [4443 4]:
| :date | :total | :west | :east |
|---|---|---|---|
| 2012-10-02 | 1938.0 | 1165.0 | 773.0 |
| 2012-10-03 | 3521.0 | 1761.0 | 1760.0 |
| 2012-10-04 | 3475.0 | 1767.0 | 1708.0 |
| 2012-10-05 | 3148.0 | 1590.0 | 1558.0 |
| 2012-10-06 | 2006.0 | 926.0 | 1080.0 |
| 2012-10-07 | 2142.0 | 951.0 | 1191.0 |
| 2012-10-08 | 3537.0 | 1708.0 | 1829.0 |
| 2012-10-09 | 3501.0 | 1742.0 | 1759.0 |
| 2012-10-10 | 3235.0 | 1587.0 | 1648.0 |
| 2012-10-11 | 3047.0 | 1468.0 | 1579.0 |
| … | … | … | … |
| 2024-11-20 | 2300.0 | 787.0 | 1513.0 |
| 2024-11-21 | 2382.0 | 775.0 | 1607.0 |
| 2024-11-22 | 1473.0 | 536.0 | 937.0 |
| 2024-11-23 | 1453.0 | 652.0 | 801.0 |
| 2024-11-24 | 727.0 | 311.0 | 416.0 |
| 2024-11-25 | 1483.0 | 486.0 | 997.0 |
| 2024-11-26 | 2173.0 | 727.0 | 1446.0 |
| 2024-11-27 | 1522.0 | 548.0 | 974.0 |
| 2024-11-28 | 631.0 | 261.0 | 370.0 |
| 2024-11-29 | 833.0 | 368.0 | 465.0 |
| 2024-11-30 | 1178.0 | 509.0 | 669.0 |
10.7.3 Prediction by day-of-week
Next, we’ll explore a simple regression by day of week.
(def days-of-week
[:Mon :Tue :Wed :Thu :Fri :Sat :Sun])We’ll convert the numeric day-of-week to the corresponding keyword:
(def idx->day-of-week
(comp days-of-week dec))For example,
(idx->day-of-week 1):Mon(idx->day-of-week 7):SunNow, let’s build our dataset:
(def totals-with-day-of-week
(-> daily-totals
(tc/add-column :day-of-week
(fn [ds]
(map idx->day-of-week
(datetime/long-temporal-field
:day-of-week
(:date ds)))))
(tc/select-columns [:total :day-of-week])))totals-with-day-of-week_unnamed [4443 2]:
| :total | :day-of-week |
|---|---|
| 1938.0 | :Tue |
| 3521.0 | :Wed |
| 3475.0 | :Thu |
| 3148.0 | :Fri |
| 2006.0 | :Sat |
| 2142.0 | :Sun |
| 3537.0 | :Mon |
| 3501.0 | :Tue |
| 3235.0 | :Wed |
| 3047.0 | :Thu |
| … | … |
| 2300.0 | :Wed |
| 2382.0 | :Thu |
| 1473.0 | :Fri |
| 1453.0 | :Sat |
| 727.0 | :Sun |
| 1483.0 | :Mon |
| 2173.0 | :Tue |
| 1522.0 | :Wed |
| 631.0 | :Thu |
| 833.0 | :Fri |
| 1178.0 | :Sat |
(def totals-with-one-hot-days-of-week
(-> (reduce (fn [dataset day-of-week]
(-> dataset
(tc/add-column day-of-week
#(-> (:day-of-week %)
(tcc/eq day-of-week)
;; convert booleans to 0/1
(tcc/* 1)))))
totals-with-day-of-week
days-of-week)
(tc/drop-columns [:day-of-week])
(ds-mod/set-inference-target :total)))(-> totals-with-one-hot-days-of-week
(tc/select-columns ds-mod/inference-column?))_unnamed [0 0]
Since the binary columns sum to 1, they’re collinear, and we won’t use an intercept. This way, each coefficient directly reflects the expected bike count for that day of week.
(def days-of-week-model
(lm totals-with-one-hot-days-of-week
{:intercept? false}))Let’s take a look at the results:
(-> days-of-week-model
println
with-out-str
kind/code)Residuals:
| :min | :q1 | :median | :q3 | :max |
|--------------+-------------+------------+------------+-------------|
| -3034.944882 | -841.755906 | -90.179528 | 828.820472 | 3745.244094 |
Coefficients:
| :name | :estimate | :stderr | :t-value | :p-value | :confidence-interval |
|-------+-------------+-----------+-----------+----------+---------------------------|
| :Mon | 2785.741325 | 44.521658 | 62.570476 | 0.0 | [2698.456664 2873.025986] |
| :Tue | 3115.527559 | 44.486587 | 70.032964 | 0.0 | [3028.311653 3202.743465] |
| :Wed | 3109.944882 | 44.486587 | 69.907472 | 0.0 | [3022.728976 3197.160788] |
| :Thu | 2961.179528 | 44.486587 | 66.563423 | 0.0 | [2873.963622 3048.395433] |
| :Fri | 2623.755906 | 44.486587 | 58.978583 | 0.0 | [2536.54 2710.971811] |
| :Sat | 1688.029921 | 44.486587 | 37.944693 | 0.0 | [1600.814015 1775.245827] |
| :Sun | 1576.178233 | 44.521658 | 35.402506 | 0.0 | [1488.893572 1663.462894] |
F-statistic: 3472.719277560978 on degrees of freedom: {:residual 4436, :model 7, :intercept 0}
p-value: 0.0
R2: 0.8456776967289252
Adjusted R2: 0.8454341764126724
Residual standard error: 1121.0266948292917 on 4436 degrees of freedom
AIC: 75015.17638480052
We can clearly see weekend versus weekday differences.