4 Plotly API reference ๐
This chapter is a detailed refernce of Tableplotโs Plotly API. For diverse examples, see the Plotly API Walkthrough.
4.1 Setup ๐จ
In this tutorial, we use:
- The Tableplot plotly API namepace
- Tablecloth for dataset processing and column processing
- dtype-nextโs tensor namespace for tensor examples
- dtype-nextโs buffered image namespace for image representation
- Kindly (to specify how certain values should be visualized)
- the datasets defined in the Datasets chapter
We require a few aditional namespaces which are used internally to generate this reference.
ns tableplot-book.plotly-reference
(:require [scicloj.tableplot.v1.plotly :as plotly]
(:as tc]
[tablecloth.api :as tcc]
[tablecloth.column.api :as tensor]
[tech.v3.tensor :as kind]
[scicloj.kindly.v4.kind :as kindly]
[scicloj.kindly.v4.api :as dag]
[scicloj.tableplot.v1.dag :as datasets]
[tableplot-book.datasets :as str]
[clojure.string :as hc]
[aerial.hanami.common :as ht]
[aerial.hanami.templates :as math])) [clojure.math
defn f->deps [f]
(->> f
(meta
:scicloj.tableplot.v1.dag/dep-ks
map include-key-or-symbol-name)
(" "))) (str/join
4.2 Overview ๐ฆ
The Tableplot Plotly API allows the user to write functional pipelines that create and process templates of plots, that can eventually be realized as Plotly.js specifications.
The data is assumed to be held in datasets defined by tech.ml.dataset (which can conveniently be used using Tablecloth).
The templates are an adapted version of Hanami Templates. Hanami transforms templates by recursively applying a simple set of rules. The rules are based on looking up substitution keys according to standard defaults as well as user substitutions overriding those defaults. Tableplot uses a slighly adapted version of Hanamiโs template transformations, which makes sure not to recurse into datasets.
For example, the layer-point
function generates a template with some specified substitutions. Let us apply this function to a dataset with some user substitutions. As you can see below, all the substitution keys are keywords beginning with =
. E.g., :=color-type
. This is just a convention that helps distinguish their role from other keys.
By default, this template is annotated by the Kindly standared so that tools supporting Kindly (such as Clay) will display by realizing it and using it as a Plotly.js specification.
-> datasets/iris
(:sepal-width
(plotly/layer-point {:=x :sepal-length
:=y :species
:=color 10})) :=mark-size
To inspect it, let us use Kindly to request that this template would rather be pretty-printed as a data structure.
-> datasets/iris
(:sepal-width
(plotly/layer-point {:=x :sepal-length
:=y :species
:=color 10})
:=mark-size kind/pprint)
:data :=traces,
{:layout :=layout,
:aerial.hanami.templates/defaults
:com.rpl.specter.impl/NONE,
{:=textfont :com.rpl.specter.impl/NONE,
:=x0 1],
:=y-type #function[clojure.lang.AFunction/:2d,
:=coordinates :com.rpl.specter.impl/NONE,
:=boxmode
:=x0-after-stat :=x0,
:=z-after-stat :=z,1],
:=splom-traces #function[clojure.lang.AFunction/
:=layers:y :=y-after-stat,
[{:trace-base
:mode :=mode,
{:type :=type,
:opacity :=mark-opacity,
:textfont :=textfont},
:color-type :=color-type,
:r :=r,
:coordinates :=coordinates,
:group :=group,
:color :=color,
:meanline-visible :=meanline-visible,
:mark :=mark,
:x-title :=x-title,
:name :=name,
:fill :=mark-fill,
:y1 :=y1-after-stat,
:bar-width :=bar-width,
:boxmode :=boxmode,
:theta :=theta,
:size :=size,
:size-type :=size-type,
:z :=z-after-stat,
:lon :=lon,
:aerial.hanami.templates/defaults
:com.rpl.specter.impl/NONE,
{:=textfont :com.rpl.specter.impl/NONE,
:=x0 1],
:=y-type #function[clojure.lang.AFunction/:2d,
:=coordinates :com.rpl.specter.impl/NONE,
:=boxmode
:=x0-after-stat :=x0,
:=z-after-stat :=z,1],
:=splom-traces #function[clojure.lang.AFunction/
:=layers [],:com.rpl.specter.impl/NONE,
:=mark-fill :com.rpl.specter.impl/NONE,
:=x1 :com.rpl.specter.impl/NONE,
:=title 1],
:=z-type #function[clojure.lang.AFunction/:com.rpl.specter.impl/NONE,
:=y1 1],
:=y-type-after-stat #function[clojure.lang.AFunction/400,
:=height :com.rpl.specter.impl/NONE,
:=box-visible :com.rpl.specter.impl/NONE,
:=name :com.rpl.specter.impl/NONE,
:=mark-opacity 1],
:=inferred-group #function[clojure.lang.AFunction/true,
:=y-showgrid :com.rpl.specter.impl/NONE,
:=density-bandwidth 1],
:=mode #function[clojure.lang.AFunction/1],
:=splom-layout #function[clojure.lang.AFunction/:com.rpl.specter.impl/NONE,
:=y-title 1],
:=z-type-after-stat #function[clojure.lang.AFunction/:com.rpl.specter.impl/NONE,
:=size :model-type :fastmath/ols},
:=model-options {
:=group :=inferred-group,:com.rpl.specter.impl/NONE,
:=y0 10,
:=mark-size :com.rpl.specter.impl/NONE,
:=violinmode 1],
:=design-matrix #function[clojure.lang.AFunction/1],
:=size-type #function[clojure.lang.AFunction/true,
:=x-showgrid :com.rpl.specter.impl/NONE,
:=r :species,
:=color :com.rpl.specter.impl/NONE,
:=mark-color :com.rpl.specter.impl/NONE,
:=bar-width
:=y1-after-stat :=y1,:sepal-width,
:=x
:=x-after-stat :=x,"rgb(255,255,255)",
:=yaxis-gridcolor :com.rpl.specter.impl/NONE,
:=lon :com.rpl.specter.impl/NONE,
:=text 1],
:=type #function[clojure.lang.AFunction/1],
:=x-type-after-stat #function[clojure.lang.AFunction/1],
:=traces #function[clojure.lang.AFunction/1],
:=x-type #function[clojure.lang.AFunction/10,
:=histogram-nbins false,
:=automargin
:=stat :=dataset,:com.rpl.specter.impl/NONE,
:=z 500,
:=width :com.rpl.specter.impl/NONE,
:=lat :t 25},
:=margin {1],
:=color-type #function[clojure.lang.AFunction/"rgb(255,255,255)",
:=xaxis-gridcolor :point,
:=mark :com.rpl.specter.impl/NONE,
:=x-title 1],
:=layout #function[clojure.lang.AFunction/:com.rpl.specter.impl/NONE,
:=colnames :sepal-length,
:=y
:=x1-after-stat :=x1,150 6]:
:=dataset datasets/iris [
:rownames | :sepal-length | :sepal-width | :petal-length | :petal-width | :species |
|
|----------:|--------------:|-------------:|--------------:|-------------:|-----------|1 | 5.1 | 3.5 | 1.4 | 0.2 | setosa |
| 2 | 4.9 | 3.0 | 1.4 | 0.2 | setosa |
| 3 | 4.7 | 3.2 | 1.3 | 0.2 | setosa |
| 4 | 4.6 | 3.1 | 1.5 | 0.2 | setosa |
| 5 | 5.0 | 3.6 | 1.4 | 0.2 | setosa |
| 6 | 5.4 | 3.9 | 1.7 | 0.4 | setosa |
| 7 | 4.6 | 3.4 | 1.4 | 0.3 | setosa |
| 8 | 5.0 | 3.4 | 1.5 | 0.2 | setosa |
| 9 | 4.4 | 2.9 | 1.4 | 0.2 | setosa |
| 10 | 4.9 | 3.1 | 1.5 | 0.1 | setosa |
|
| ... | ... | ... | ... | ... | ... |140 | 6.9 | 3.1 | 5.4 | 2.1 | virginica |
| 141 | 6.7 | 3.1 | 5.6 | 2.4 | virginica |
| 142 | 6.9 | 3.1 | 5.1 | 2.3 | virginica |
| 143 | 5.8 | 2.7 | 5.1 | 1.9 | virginica |
| 144 | 6.8 | 3.2 | 5.9 | 2.3 | virginica |
| 145 | 6.7 | 3.3 | 5.7 | 2.5 | virginica |
| 146 | 6.7 | 3.0 | 5.2 | 2.3 | virginica |
| 147 | 6.3 | 2.5 | 5.0 | 1.9 | virginica |
| 148 | 6.5 | 3.0 | 5.2 | 2.0 | virginica |
| 149 | 6.2 | 3.4 | 5.4 | 2.3 | virginica |
| 150 | 5.9 | 3.0 | 5.1 | 1.8 | virginica |
|
,"rgb(235,235,235)",
:=background :com.rpl.specter.impl/NONE,
:=theta
:=y0-after-stat :=y0,
:=y-after-stat :=y,
:=predictors [:=x],1],
:=marker-size-key #function[clojure.lang.AFunction/:com.rpl.specter.impl/NONE},
:=meanline-visible :lat :=lat,
:y0 :=y0-after-stat,
:inferred-group :=inferred-group,
:marker-override
:color :=mark-color, :=marker-size-key :=mark-size},
{:x :=x-after-stat,
:x1 :=x1-after-stat,
:x0 :=x0-after-stat,
:y-title :=y-title,
:box-visible :=box-visible,
:dataset :=stat,
:violinmode :=violinmode,
:text :=text}],
:com.rpl.specter.impl/NONE,
:=mark-fill :com.rpl.specter.impl/NONE,
:=x1 :com.rpl.specter.impl/NONE,
:=title 1],
:=z-type #function[clojure.lang.AFunction/:com.rpl.specter.impl/NONE,
:=y1 1],
:=y-type-after-stat #function[clojure.lang.AFunction/400,
:=height :com.rpl.specter.impl/NONE,
:=box-visible :com.rpl.specter.impl/NONE,
:=name :com.rpl.specter.impl/NONE,
:=mark-opacity 1],
:=inferred-group #function[clojure.lang.AFunction/true,
:=y-showgrid :com.rpl.specter.impl/NONE,
:=density-bandwidth 1],
:=mode #function[clojure.lang.AFunction/1],
:=splom-layout #function[clojure.lang.AFunction/:com.rpl.specter.impl/NONE,
:=y-title 1],
:=z-type-after-stat #function[clojure.lang.AFunction/:com.rpl.specter.impl/NONE,
:=size :model-type :fastmath/ols},
:=model-options {
:=group :=inferred-group,:com.rpl.specter.impl/NONE,
:=y0 :com.rpl.specter.impl/NONE,
:=mark-size :com.rpl.specter.impl/NONE,
:=violinmode 1],
:=design-matrix #function[clojure.lang.AFunction/1],
:=size-type #function[clojure.lang.AFunction/true,
:=x-showgrid :com.rpl.specter.impl/NONE,
:=r :com.rpl.specter.impl/NONE,
:=color :com.rpl.specter.impl/NONE,
:=mark-color :com.rpl.specter.impl/NONE,
:=bar-width
:=y1-after-stat :=y1,:x,
:=x
:=x-after-stat :=x,"rgb(255,255,255)",
:=yaxis-gridcolor :com.rpl.specter.impl/NONE,
:=lon :com.rpl.specter.impl/NONE,
:=text 1],
:=type #function[clojure.lang.AFunction/1],
:=x-type-after-stat #function[clojure.lang.AFunction/1],
:=traces #function[clojure.lang.AFunction/1],
:=x-type #function[clojure.lang.AFunction/10,
:=histogram-nbins false,
:=automargin
:=stat :=dataset,:com.rpl.specter.impl/NONE,
:=z 500,
:=width :com.rpl.specter.impl/NONE,
:=lat :t 25},
:=margin {1],
:=color-type #function[clojure.lang.AFunction/"rgb(255,255,255)",
:=xaxis-gridcolor :point,
:=mark :com.rpl.specter.impl/NONE,
:=x-title 1],
:=layout #function[clojure.lang.AFunction/:com.rpl.specter.impl/NONE,
:=colnames :y,
:=y
:=x1-after-stat :=x1,150 6]:
:=dataset datasets/iris [
:rownames | :sepal-length | :sepal-width | :petal-length | :petal-width | :species |
|
|----------:|--------------:|-------------:|--------------:|-------------:|-----------|1 | 5.1 | 3.5 | 1.4 | 0.2 | setosa |
| 2 | 4.9 | 3.0 | 1.4 | 0.2 | setosa |
| 3 | 4.7 | 3.2 | 1.3 | 0.2 | setosa |
| 4 | 4.6 | 3.1 | 1.5 | 0.2 | setosa |
| 5 | 5.0 | 3.6 | 1.4 | 0.2 | setosa |
| 6 | 5.4 | 3.9 | 1.7 | 0.4 | setosa |
| 7 | 4.6 | 3.4 | 1.4 | 0.3 | setosa |
| 8 | 5.0 | 3.4 | 1.5 | 0.2 | setosa |
| 9 | 4.4 | 2.9 | 1.4 | 0.2 | setosa |
| 10 | 4.9 | 3.1 | 1.5 | 0.1 | setosa |
|
| ... | ... | ... | ... | ... | ... |140 | 6.9 | 3.1 | 5.4 | 2.1 | virginica |
| 141 | 6.7 | 3.1 | 5.6 | 2.4 | virginica |
| 142 | 6.9 | 3.1 | 5.1 | 2.3 | virginica |
| 143 | 5.8 | 2.7 | 5.1 | 1.9 | virginica |
| 144 | 6.8 | 3.2 | 5.9 | 2.3 | virginica |
| 145 | 6.7 | 3.3 | 5.7 | 2.5 | virginica |
| 146 | 6.7 | 3.0 | 5.2 | 2.3 | virginica |
| 147 | 6.3 | 2.5 | 5.0 | 1.9 | virginica |
| 148 | 6.5 | 3.0 | 5.2 | 2.0 | virginica |
| 149 | 6.2 | 3.4 | 5.4 | 2.3 | virginica |
| 150 | 5.9 | 3.0 | 5.1 | 1.8 | virginica |
|
,"rgb(235,235,235)",
:=background :com.rpl.specter.impl/NONE,
:=theta
:=y0-after-stat :=y0,
:=y-after-stat :=y,
:=predictors [:=x],1],
:=marker-size-key #function[clojure.lang.AFunction/:com.rpl.specter.impl/NONE},
:=meanline-visible :kindly/f #'scicloj.tableplot.v1.plotly/plotly-xform}
For now, you are not supposed to make sense of this data representation. As a user, you usually do not need to think about it.
If you wish to see the actual Plotly.js specification, you can use the plot
function:
-> datasets/iris
(:sepal-width
(plotly/layer-point {:=x :sepal-length
:=y :species
:=color 10})
:=mark-size
plotly/plot kind/pprint)
:data
{:y
[{5.1
[4.9
4.7
4.6
5.0
5.4
4.6
5.0
4.4
4.9
5.4
4.8
4.8
4.3
5.8
5.7
5.4
5.1
5.7
5.1
5.4
5.1
4.6
5.1
4.8
5.0
5.0
5.2
5.2
4.7
4.8
5.4
5.2
5.5
4.9
5.0
5.5
4.9
4.4
5.1
5.0
4.5
4.4
5.0
5.1
4.8
5.1
4.6
5.3
5.0],
:r nil,
:name "setosa",
:marker {:color "#1B9E77", :size 10},
:fill nil,
:mode :markers,
:width nil,
:type "scatter",
:theta nil,
:z nil,
:lon nil,
:lat nil,
:x
3.5
[3.0
3.2
3.1
3.6
3.9
3.4
3.4
2.9
3.1
3.7
3.4
3.0
3.0
4.0
4.4
3.9
3.5
3.8
3.8
3.4
3.7
3.6
3.3
3.4
3.0
3.4
3.5
3.4
3.2
3.1
3.4
4.1
4.2
3.1
3.2
3.5
3.6
3.0
3.4
3.5
2.3
3.2
3.5
3.8
3.0
3.8
3.2
3.7
3.3],
:text nil}
:y
{7.0
[6.4
6.9
5.5
6.5
5.7
6.3
4.9
6.6
5.2
5.0
5.9
6.0
6.1
5.6
6.7
5.6
5.8
6.2
5.6
5.9
6.1
6.3
6.1
6.4
6.6
6.8
6.7
6.0
5.7
5.5
5.5
5.8
6.0
5.4
6.0
6.7
6.3
5.6
5.5
5.5
6.1
5.8
5.0
5.6
5.7
5.7
6.2
5.1
5.7],
:r nil,
:name "versicolor",
:marker {:color "#D95F02", :size 10},
:fill nil,
:mode :markers,
:width nil,
:type "scatter",
:theta nil,
:z nil,
:lon nil,
:lat nil,
:x
3.2
[3.2
3.1
2.3
2.8
2.8
3.3
2.4
2.9
2.7
2.0
3.0
2.2
2.9
2.9
3.1
3.0
2.7
2.2
2.5
3.2
2.8
2.5
2.8
2.9
3.0
2.8
3.0
2.9
2.6
2.4
2.4
2.7
2.7
3.0
3.4
3.1
2.3
3.0
2.5
2.6
3.0
2.6
2.3
2.7
3.0
2.9
2.9
2.5
2.8],
:text nil}
:y
{6.3
[5.8
7.1
6.3
6.5
7.6
4.9
7.3
6.7
7.2
6.5
6.4
6.8
5.7
5.8
6.4
6.5
7.7
7.7
6.0
6.9
5.6
7.7
6.3
6.7
7.2
6.2
6.1
6.4
7.2
7.4
7.9
6.4
6.3
6.1
7.7
6.3
6.4
6.0
6.9
6.7
6.9
5.8
6.8
6.7
6.7
6.3
6.5
6.2
5.9],
:r nil,
:name "virginica",
:marker {:color "#7570B3", :size 10},
:fill nil,
:mode :markers,
:width nil,
:type "scatter",
:theta nil,
:z nil,
:lon nil,
:lat nil,
:x
3.3
[2.7
3.0
2.9
3.0
3.0
2.5
2.9
2.5
3.6
3.2
2.7
3.0
2.5
2.8
3.2
3.0
3.8
2.6
2.2
3.2
2.8
2.8
2.7
3.3
3.2
2.8
3.0
2.8
3.0
2.8
3.8
2.8
2.8
2.6
3.0
3.4
3.1
3.0
3.1
3.1
3.1
2.7
3.2
3.3
3.0
2.5
3.0
3.4
3.0],
:text nil}],
:layout
:width 500,
{:height 400,
:margin {:t 25},
:automargin false,
:plot_bgcolor "rgb(235,235,235)",
:xaxis
:gridcolor "rgb(255,255,255)", :title :sepal-width, :showgrid true},
{:yaxis
:gridcolor "rgb(255,255,255)",
{:title :sepal-length,
:showgrid true},
:title nil}}
We may also inspect it with Portal:
-> datasets/iris
(:sepal-width
(plotly/layer-point {:=x :sepal-length
:=y :species
:=color 10})
:=mark-size
plotly/plot kind/portal)
This is useful for debugging, and also when one wishes to edit the Plotly.js spec directly.
In the remainder of this chapter, we will offer a detailed reference to the API functions, the way layers are defined, the substitution keys, and the relationships among them.
4.3 Debugging ๐
Throughout this notebook, we will sometimes use the debug
function that allows one to look into the value of a given substitution key in a given context.
For example, here we learn about the :=background
key for background color. In this example, we kept it grey, which is its default.
-> datasets/iris
(:sepal-width
(plotly/layer-point {:=x :sepal-length
:=y :species
:=color 10})
:=mark-size (plotly/debug :=background))
"rgb(235,235,235)"
4.4 Raw Plotly specifications โ
Before beginning the exploration of Tableplotโs Plotly API, let us remember we may also use the raw format supported by Plotly.js. We simply use plain Clojuree data structures to represent the JSON format expected by Plotly.js and annotate it as kind/plotly
, so that our Clojure tooling knows to treat it as such when displaying it.
For example, let us reproduce one of its Bubble Chart Examples.
The original Javascript code looks like this:
var trace1 = {
x: [1, 2, 3, 4],
y: [10, 11, 12, 13],
text: ['A<br>size: 40', 'B<br>size: 60', 'C<br>size: 80', 'D<br>size: 100'],
mode: 'markers',
marker: {
color: ['rgb(93, 164, 214)', 'rgb(255, 144, 14)', 'rgb(44, 160, 101)', 'rgb(255, 65, 54)'],
size: [40, 60, 80, 100]
};
}
var data = [trace1];
var layout = {
title: {
text: 'Bubble Chart Hover Text'
,
}showlegend: false,
height: 600,
width: 600
;
}
.newPlot('myDiv', data, layout); Plotly
Here is how we represent that in Clojure:
(plotly/plot:data [{:x [1 2 3 4]
{:y [10 11 12 13]
:text ["A<br>size: 40" "B<br>size: 60" "C<br>size: 80" "D<br>size: 100"]
:mode :markers
:marker {:color ["rgb(93, 164, 214)", "rgb(255, 144, 14)", "rgb(44, 160, 101)", "rgb(255, 65, 54)"]
:size [40 60 80 100]}}]
:layout {:title {:text "Bubble Chart Hover Text"}
:showlegend false
:height 600
:width 600}})
Sometimes, this raw way is all we need; but in common situations, Tableplot makes things easier.
4.5 Concepts ๐ก
4.5.1 Plotly.js traces
Traces are a core concept in Plotly.js. They specify separate parts of the plots which can be drawn on the same canvas but may vary in their visual nature.
For example, here is a raw Plotly.js spec with two traces.
(plotly/plot:data [{:x [1 2 3 4]
{:y [10 15 12 13]
:color "blue"
:mode :markers
:marker {:size [40 60 80 100]
:color ["blue" "brown" "red" "green"]}}
:x [1 2 3 4]
{:y [15 21 17 18]
:mode :markers
:color "grey"
:marker {:size 50
:color "grey"}}]})
In Tableplot, we often do not need to think about traces, as they are drawn for us. But it is helpful to know about them if we wish to understand the specs generated by Tableplot.
4.5.2 Layers
Layers are a higher-level concept. We introduce them in Tableplot following ggplot2โs layered grammar of graphics. Plotly bindings in other languages have similar concepts.
Like traces, layers are also parts of the plot that can be drawn on the same canvas, but they are a slightly higher-level concept, that makes it easier to bind our data to parts of the plot.
Layers are themselves templates, so they can have their own substitutions.
For example:
-> datasets/iris
(10 {:seed 1})
(tc/random :sepal-width
(plotly/layer-point {:=x :sepal-length
:=y :species
:=color 20})
:=mark-size :species})) (plotly/layer-text {:=text
This plot has two layers: one for points, and one for text (which is visible on hover).
Let us see that using debug
:
-> datasets/iris
(10 {:seed 1})
(tc/random :sepal-width
(plotly/layer-point {:=x :sepal-length
:=y :species
:=color 20})
:=mark-size :species})
(plotly/layer-text {:=text
(plotly/debug :=layers) kind/pprint)
:y :sepal-length,
[{:trace-base {:mode :markers, :type "scatter"},
:color-type :nominal,
:coordinates :2d,
:group (:species),
:color :species,
:mark :point,
:inferred-group (:species),
:marker-override {:size 20},
:x :sepal-width,
:dataset datasets/iris [10 6]:
:rownames | :sepal-length | :sepal-width | :petal-length | :petal-width | :species |
|
|----------:|--------------:|-------------:|--------------:|-------------:|------------|27 | 5.0 | 3.4 | 1.6 | 0.4 | setosa |
| 97 | 5.7 | 2.9 | 4.2 | 1.3 | versicolor |
| 127 | 6.2 | 2.8 | 4.8 | 1.8 | virginica |
| 92 | 6.1 | 3.0 | 4.6 | 1.4 | versicolor |
| 7 | 4.6 | 3.4 | 1.4 | 0.3 | setosa |
| 95 | 5.6 | 2.7 | 4.2 | 1.3 | versicolor |
| 125 | 6.7 | 3.3 | 5.7 | 2.1 | virginica |
| 61 | 5.0 | 2.0 | 3.5 | 1.0 | versicolor |
| 73 | 6.3 | 2.5 | 4.9 | 1.5 | versicolor |
| 42 | 4.5 | 2.3 | 1.3 | 0.3 | setosa |
|
}:y :y,
{:trace-base {:mode :text, :type "scatter"},
:coordinates :2d,
:mark :text,
:x :x,
:dataset datasets/iris [10 6]:
:rownames | :sepal-length | :sepal-width | :petal-length | :petal-width | :species |
|
|----------:|--------------:|-------------:|--------------:|-------------:|------------|27 | 5.0 | 3.4 | 1.6 | 0.4 | setosa |
| 97 | 5.7 | 2.9 | 4.2 | 1.3 | versicolor |
| 127 | 6.2 | 2.8 | 4.8 | 1.8 | virginica |
| 92 | 6.1 | 3.0 | 4.6 | 1.4 | versicolor |
| 7 | 4.6 | 3.4 | 1.4 | 0.3 | setosa |
| 95 | 5.6 | 2.7 | 4.2 | 1.3 | versicolor |
| 125 | 6.7 | 3.3 | 5.7 | 2.1 | virginica |
| 61 | 5.0 | 2.0 | 3.5 | 1.0 | versicolor |
| 73 | 6.3 | 2.5 | 4.9 | 1.5 | versicolor |
| 42 | 4.5 | 2.3 | 1.3 | 0.3 | setosa |
|
,:text :species}]
You see, a layer is an intermediate data representation of Tableplot that takes care of the details necessary to generate traces.
In our example, the two layers are realized as four traces: since the point layer is colored by species, it is realized as three traces.
Let us see that using debug
:
-> datasets/iris
(10 {:seed 1})
(tc/random :sepal-width
(plotly/layer-point {:=x :sepal-length
:=y :species
:=color 20})
:=mark-size :species})
(plotly/layer-text {:=text
(plotly/debug :=traces) kind/pprint)
:y [5.0 4.6 4.5],
[{:r nil,
:name "setosa",
:marker {:color "#1B9E77", :size 20},
:fill nil,
:mode :markers,
:width nil,
:type "scatter",
:theta nil,
:z nil,
:lon nil,
:lat nil,
:x [3.4 3.4 2.3],
:text nil}
:y [5.7 6.1 5.6 5.0 6.3],
{:r nil,
:name "versicolor",
:marker {:color "#D95F02", :size 20},
:fill nil,
:mode :markers,
:width nil,
:type "scatter",
:theta nil,
:z nil,
:lon nil,
:lat nil,
:x [2.9 3.0 2.7 2.0 2.5],
:text nil}
:y [6.2 6.7],
{:r nil,
:name "virginica",
:marker {:color "#7570B3", :size 20},
:fill nil,
:mode :markers,
:width nil,
:type "scatter",
:theta nil,
:z nil,
:lon nil,
:lat nil,
:x [2.8 3.3],
:text nil}
:r nil,
{:name "",
:fill nil,
:mode :text,
:width nil,
:type "scatter",
:theta nil,
:z nil,
:lon nil,
:lat nil,
:text
"setosa"
["versicolor"
"virginica"
"versicolor"
"setosa"
"versicolor"
"virginica"
"versicolor"
"versicolor"
"setosa"]}]
4.5.3 Mark
Mark is a Tableplot notion that is used to distinguish different types of layers, e.g. point-layer
vs line-layer
. It is similar to the ggplot notion of โgeomโ.
Its possible values are:
:point :text :line :box :violin :bar :segment] [
Here, :box
means boxplot, and :violin
means Violin plot.
4.5.4 Coordinates
Coordinates are a Tableplot notion that defines how marks are eventually mapped over to the cranvas, similar to ggplotโs notion.
We currently support the following:
:2d :3d :polar :geo] [
Here, 2d and 3d mean Eucledian coordinates of the corresponding dimensions, and :geo
means latitude and longitude.
4.5.5 Plotly.js mode and type
Mode and type are Plotly.js notions that are used to distinguish diffetent types of traces.
Combinations of Tableplotโs mark and coordinates are mapped onto combinations of Plotly.js mode and type, but currently we do not use all the meaningful combinations supported by Plotly.js.
Mode is derived from mark as follows:
_unnamed [6 2]:
:mark | :mode |
---|---|
:point | :markers |
:text | :text |
:line | :lines |
:box | |
:bar | |
:segment | :lines |
Type is defined as the concatenation of a mark-based string: ("box"
or "bar"
if that is the mark, and "scatter"
otherwise) with a coordinates-based string ("3d"
, "polar"
, or "geo"
if we have such coordinates, nil
otherwise).
Thus, for example, if the mark is :point
and the coordinates are :polar
, then the type is "scatterpolar"
.
4.5.6 Field types
Looking into the data in the columns, we may classify them into the following types:
:quantitative
- numerical columns:temporal
- date-time columns:nominal
- all other column types (e.g., Strings, keywords)
In certain situations, the types of data in relevant columns determines the way things should be plotted.
For example, when a column is used for coloring a plot, we should use gradient colors when it is quantitative but more distinct colors when it is nominal.
Colorin gby a nominal column:
-> datasets/iris
(
(plotly/layer-point:sepal-width
{:=x :sepal-length
:=y :species
:=color 20})) :=mark-size
Coloring by a Quantitative column:
-> datasets/mtcars
(
(plotly/layer-point:mpg
{:=x :disp
:=y :cyl
:=color 20})) :=mark-size
Overriding a quantitative column to be considered nominal by the :=color-type
key:
-> datasets/mtcars
(
(plotly/layer-point:mpg
{:=x :disp
:=y :cyl
:=color :nominal
:=color-type 20})) :=mark-size
4.5.7 Stat
A stat is a statistical transformation that takes the substitution context and returns a new dataset. Stats such as smooth-stat
, histogram-stat
, and density-stat
are used in a few of the layer functions, such as layer-smooth
, layer-histogram
, and layer-density
.
The user will typically not need to think about them, but they are a useful concept in extending Tableplot.
4.6 API functions โ
4.6.1 base
[dataset-or-template]
[dataset-or-template submap]
[dataset template submap]
The base
function can be used to create the basis template to which we can add layers. It can be used to set up some substitution keys to be shared by the various layers.
The return value is always a template which is set up to be visualized as Plotly.js.
In the full case of three arguments (dataset template submap)
, dataset
is added to template
as the value substituted for the :=dataset
key, and the substitution map submap
is added as well.
In the other cases, if the template
is not passed missing, it is replaced by a minimal base template to be carried along the pipeline. If the dataset
or submap
parts are not passed, they are simply not substituted into the template.
If the first argument is a dataset, it is converted to a very basic template where it is substituted at the :=dataset
key.
We typically use base
with other layers added to it. The base substitutions are shared between layers, and the layers can override them and add substitutions of their own.
๐ Main useful keys:
4.6.1.1 For example
-> datasets/iris
(:sepal-width
(plotly/base {:=x :sepal-length
:=y 10})
:=mark-size "grey"
(plotly/layer-point {:=mark-color 20
:=mark-size 0.3})
:=mark-opacity :species})) (plotly/layer-point {:=color
4.6.2 layer
[dataset-or-template layer-template submap]
The layer
function is typically not used on the user side. It is a generic way to create more specific functions to add layers such as layer-point
.
If dataset-or-template
is a dataset, it is converted to a basic template where it is substituted at the :=dataset
key.
Otherwise, it is already template and can be processed further. The layer-template
template is added as an additional layer to our template. The submap
substitution map is added as additional substitutions to that layer.
The var layer-base
is typicall used as the layer-template
.
๐ Main useful keys:
:=mark
- The keys that are useful for the
layer-*
functions.
4.6.2.1 For example
We could write someting like:
-> datasets/iris
(
(plotly/layer plotly/layer-base:point
{:=mark :sepal-width
:=x :sepal-length})) :=y
Of course, this can also be expressed more succinctly using layer-point
.
-> datasets/iris
(:sepal-width
(plotly/layer-point {:=x :sepal-length})) :=y
4.6.3 layer-point
[dataset-or-template]
[dataset-or-template submap]
Add a point layer to the given dataset-or-template
, with possible additional substitutions if submap
is provided.
๐ Main useful keys: :=dataset
:=mark
:=x
:=y
:=color
:=size
:=color-type
:=size-type
:=mark-color
:=mark-size
:=mark-opacity
4.6.3.1 For example
-> datasets/mtcars
(
(plotly/layer-point:mpg
{:=x :disp
:=y :cyl
:=color :nominal
:=color-type 20})) :=mark-size
4.6.4 layer-line
[dataset-or-template]
[dataset-or-template submap]
Add a line layer to the given dataset-or-template
, with possible additional substitutions if submap
is provided.
๐ Main useful keys: :=dataset
:=x
:=y
:=color
:=size
:=color-type
:=size-type
:=mark-color
:=mark-size
:=mark-opacity
4.6.4.1 For example
-> datasets/economics-long
(-> % :variable (= "unemploy")))
(tc/select-rows #(
(plotly/layer-line:date
{:=x :value
:=y "purple"})) :=mark-color
4.6.5 layer-bar
[dataset-or-template]
[dataset-or-template submap]
Add a bar layer to the given dataset-or-template
, with possible additional substitutions if submap
is provided.
๐ Main useful keys: :=bar-width
:=dataset
:=x
:=y
:=color
:=size
:=color-type
:=size-type
:=mark-color
:=mark-size
:=mark-opacity
4.6.5.1 For example
-> datasets/mtcars
(:cyl])
(tc/group-by [:total-disp #(-> % :disp tcc/sum)})
(tc/aggregate {:bar-width 0.5)
(tc/add-column
(plotly/layer-bar:cyl
{:=x :bar-width
:=bar-width :total-disp})) :=y
4.6.6 layer-boxplot
[dataset-or-template]
[dataset-or-template submap]
Add a boxplot layer to the given dataset-or-template
, with possible additional substitutions if submap
is provided.
๐ Main useful keys: :=boxmode
:=dataset
:=x
:=y
:=color
:=size
:=color-type
:=size-type
:=mark-color
:=mark-size
:=mark-opacity
4.6.6.1 For example
-> datasets/mtcars
(
(plotly/layer-boxplot:cyl
{:=x :disp})) :=y
-> datasets/mtcars
(
(plotly/layer-boxplot:cyl
{:=x :disp
:=y :am
:=color :nominal})) :=color-type
-> datasets/mtcars
(
(plotly/layer-boxplot:cyl
{:=x :disp
:=y :am
:=color :nominal
:=color-type :group})) :=boxmode
4.6.7 layer-violin
[dataset-or-template]
[dataset-or-template submap]
Add a Violin plot layer to the given dataset-or-template
, with possible additional substitutions if submap
is provided.
๐ Main useful keys: :=violinmode
:=box-visible
:=meanline-visible
:=dataset
:=x
:=y
:=color
:=size
:=color-type
:=size-type
:=mark-color
:=mark-size
:=mark-opacity
4.6.7.1 For example
-> datasets/mtcars
(
(plotly/layer-violin:cyl
{:=x :disp})) :=y
-> datasets/mtcars
(
(plotly/layer-violin:cyl
{:=x :disp
:=y true})) :=box-visible
-> datasets/mtcars
(
(plotly/layer-violin:cyl
{:=x :disp
:=y true})) :=meanline-visible
-> datasets/mtcars
(
(plotly/layer-violin:cyl
{:=x :disp
:=y :am
:=color :nominal})) :=color-type
-> datasets/mtcars
(
(plotly/layer-violin:cyl
{:=x :disp
:=y :am
:=color :nominal
:=color-type :group})) :=violinmode
4.6.8 layer-segment
[dataset-or-template]
[dataset-or-template submap]
Add a segment layer to the given dataset-or-template
, with possible additional substitutions if submap
is provided.
๐ Main useful keys: :=dataset
:=x0
:=y0
:=x1
:=y1
:=color
:=size
:=color-type
:=size-type
:=mark-color
:=mark-size
:=mark-opacity
4.6.8.1 For example
-> datasets/iris
(
(plotly/layer-segment:sepal-width
{:=x0 :sepal-length
:=y0 :petal-width
:=x1 :petal-length
:=y1 0.4
:=mark-opacity 3
:=mark-size :species})) :=color
4.6.9 layer-text
[dataset-or-template]
[dataset-or-template submap]
Add a text layer to the given dataset-or-template
, with possible additional substitutions if submap
is provided.
๐ Main useful keys: :=text
:=textfont
:=dataset
:=x
:=y
:=color
:=size
:=color-type
:=size-type
:=mark-color
:=mark-size
:=mark-opacity
4.6.9.1 For example
-> datasets/mtcars
(
(plotly/layer-text:mpg
{:=x :disp
:=y :cyl
:=text :family "Courier New, monospace"
:=textfont {:size 16
:color :purple}
20})) :=mark-size
4.6.10 layer-histogram
[context]
[context submap]
Add a histogram layer to the given dataset-or-template
, with possible additional substitutions if submap
is provided.
histogram-stat
is used internally as :=stat
.
The histogramโs binning and counting are computed using Fastmath.
The :=histogram-nbins
key controls the number of bins.
If a list of grouping columns :=group
is specified, e.g., when the plot is colored by a nominal type, then the data is grouped by this column, and overlapping histograms are generated.
๐ Main useful keys: :=histogram-nbins
:=dataset
:=x
:=color
:=color-type
:=mark-color
:=mark-size
:=mark-opacity
4.6.10.1 Examples:
-> datasets/iris
(:sepal-width})) (plotly/layer-histogram {:=x
-> datasets/iris
(:sepal-width
(plotly/layer-histogram {:=x 30})) :=histogram-nbins
-> datasets/iris
(:sepal-width
(plotly/layer-histogram {:=x :species
:=color 0.5})) :=mark-opacity
4.6.11 layer-density
[context]
[context submap]
(experimental)
Add an estimated density layer to the given dataset-or-template
, with possible additional substitutions if submap
is provided.
density-stat
is used internally as :=stat
.
The density is estimated by Gaussian kernel density estimation using Fastmath.
The :=density-bandwidth
can controls the bandwidth. Otherwise, it is determined by a rule of thumb.
If a list of grouping columns :=group
is specified, e.g., when the plot is colored by a nominal type, then the data is grouped by this column, and overlapping densities are generated.
๐ Main useful keys: :=dataset
:=x
:=y
:=predictors
:=design-matrix
:=model-options
:=group
:=mark-color
:=mark-size
:=mark-opacity
4.6.11.1 Examples:
-> datasets/iris
(:sepal-width})) (plotly/layer-density {:=x
-> datasets/iris
(:sepal-width
(plotly/layer-density {:=x 0.05})) :=density-bandwidth
-> datasets/iris
(:sepal-width
(plotly/layer-density {:=x 1})) :=density-bandwidth
-> datasets/iris
(:sepal-width
(plotly/layer-density {:=x :species})) :=color
4.6.12 layer-smooth
[context]
[context submap]
Add a smoothed layer layer to the given dataset-or-template
, with possible additional substitutions if submap
is provided.
Statistical regression methods are applied to the dataset to model it as a smooth shape. It is inspired by ggplotโs geom_smooth.
smooth-stat
is used internally as :=stat
.
By default, the regression is computed with only one predictor variable, which is :=x
. This can be overriden using the :=predictors
key, which allows computing a regression with more than one predictor.
One can also specify the predictor columns as expressions through the :=design-matrix
key. Here, we use the design matrix functionality of Metamorph.ml.
One can also provide the regression model details through :=model-options
and use any regression model and parameters registered by Metamorph.ml.
The regressions computed are done on a group level, where the grouping can be inferred as :=inferred-group
but can also be user-overridden through :=group
.
4.6.12.1 Examples:
Simple linear regression of :=y
by :=x
:
-> datasets/iris
(:sepal-width
(plotly/base {:=x :sepal-length})
:=y "green"
(plotly/layer-point {:=mark-color "Actual"})
:=name "orange"
(plotly/layer-smooth {:=mark-color "Predicted"})) :=name
Multiple linear regression of :=y
by :=predictors
:
-> datasets/iris
(:sepal-width
(plotly/base {:=x :sepal-length})
:=y "green"
(plotly/layer-point {:=mark-color "Actual"})
:=name :petal-width
(plotly/layer-smooth {:=predictors [:petal-length]
0.5
:=mark-opacity "Predicted"})) :=name
Polynomial regression of :=y
by :=design-matrix
:
-> datasets/iris
(:sepal-width
(plotly/base {:=x :sepal-length})
:=y "green"
(plotly/layer-point {:=mark-color "Actual"})
:=name :sepal-width '(identity sepal-width)]
(plotly/layer-smooth {:=design-matrix [[:sepal-width-2 '(* sepal-width
[
sepal-width)]]0.5
:=mark-opacity "Predicted"})) :=name
Custom regression defined by :=model-options
:
require 'scicloj.ml.tribuo) (
def regression-tree-options
(:model-type :scicloj.ml.tribuo/regression
{:tribuo-components [{:name "cart"
:type "org.tribuo.regression.rtree.CARTRegressionTrainer"
:properties {:maxDepth "8"
:fractionFeaturesInSplit "1.0"
:seed "12345"
:impurity "mse"}}
:name "mse"
{:type "org.tribuo.regression.rtree.impurity.MeanSquaredError"}]
:tribuo-trainer-name "cart"})
-> datasets/iris
(:sepal-width
(plotly/base {:=x :sepal-length})
:=y "green"
(plotly/layer-point {:=mark-color "Actual"})
:=name
(plotly/layer-smooth {:=model-options regression-tree-options0.5
:=mark-opacity "Predicted"})) :=name
Grouped regression where :=inferred-group
is influenced by :color
since :=color-type
is :nominal
:
-> datasets/iris
("dummy"
(plotly/base {:=title :species
:=color :sepal-width
:=x :sepal-length})
:=y
plotly/layer-point plotly/layer-smooth)
Regression where grouping is avoiding using through :=group
:
-> datasets/iris
("dummy"
(plotly/base {:=title :species
:=color
:=group []:sepal-width
:=x :sepal-length})
:=y
plotly/layer-point"red"})) (plotly/layer-smooth {:=mark-color
An simpler way to achieve this โ the color is only defined for the point layer:
-> datasets/iris
("dummy"
(plotly/base {:=title :sepal-width
:=x :sepal-length})
:=y :species})
(plotly/layer-point {:=color plotly/layer-smooth)
4.6.13 plot
[template]
The plot
function realizes a template as a Plotly.js specification.
4.6.13.1 For example
-> datasets/iris
(
tc/head:sepal-width
(plotly/layer-point {:=x :sepal-length})
:=y
plotly/plot kind/pprint)
:data
{:y [5.1 4.9 4.7 4.6 5.0],
[{:r nil,
:name "",
:fill nil,
:mode :markers,
:width nil,
:type "scatter",
:theta nil,
:z nil,
:lon nil,
:lat nil,
:x [3.5 3.0 3.2 3.1 3.6],
:text nil}],
:layout
:width 500,
{:height 400,
:margin {:t 25},
:automargin false,
:plot_bgcolor "rgb(235,235,235)",
:xaxis
:gridcolor "rgb(255,255,255)", :title :sepal-width, :showgrid true},
{:yaxis
:gridcolor "rgb(255,255,255)",
{:title :sepal-length,
:showgrid true},
:title nil}}
This can be useful for editing the plot as a raw Plotly.js specification. For example:
-> datasets/iris
(:sepal-width
(plotly/layer-point {:=x :sepal-length})
:=y
plotly/plotassoc-in [:layout :plot_bgcolor] "floralwhite")) (
4.6.14 debug
[template result]
[template layer-idx result]
(experimental)
Given a template
and a result
structure involving substitution keys, find out what value result
would receive when realizing the template.
Given a template
, a layer-idx
integer, and a result
structure involving substitution keys, find out what value result
would receive when realizing the layer-idx
th layer in the template.
4.6.14.1 For example
-> datasets/iris
(:sepal-width
(plotly/layer-point {:=x :sepal-length
:=y :species})) :=color
Let us verify that :=background
is deterimined to be grey.
-> datasets/iris
(:sepal-width
(plotly/layer-point {:=x :sepal-length
:=y :species})
:=color (plotly/debug :=background))
"rgb(235,235,235)"
Here, let us verify :=color-type
for the 0th layer is deterimined to be :nominal
.
-> datasets/iris
(:sepal-width
(plotly/layer-point {:=x :sepal-length
:=y :species})
:=color 0 :=color-type)) (plotly/debug
:nominal
Here, let us check both :=color
and :=color-type
for the 0th layer.
-> datasets/iris
(:sepal-width
(plotly/layer-point {:=x :sepal-length
:=y :species})
:=color 0 {:color :=color
(plotly/debug :color-type :=color-type}))
:color :species, :color-type :nominal} {
4.6.15 imshow
[image]
Show a given image
- either a java.awt.image.BufferedImage
object or a two dimensional matrix of RGB triples.
Imshow uses dtype-nextโs BufferedImage support to figure out the right order of color channels, etc.
So, it can handle plain vectors of vectors, dtype next tensors, and actual Java BufferedImage objects.
4.6.15.1 For example
(plotly/imshowfor [i (range 10)]
(for [j (range 10)]
(* 10 i) ; Red
[(* 10 j) ; Green
(* 10 (+ i j)) ; Blue
( ])))
(plotly/imshow
(tensor/compute-tensor100 100 3]
[fn [i j k]
(case k
(0 i ; Red
1 j ; Green
2 (+ i j) ; Blue
)):uint8))
defonce Crab-Nebula-image
(-> "https://upload.wikimedia.org/wikipedia/commons/thumb/0/00/Crab_Nebula.jpg/240px-Crab_Nebula.jpg"
(
(java.net.URL.) (javax.imageio.ImageIO/read)))
(plotly/imshow Crab-Nebula-image)
4.6.16 surface
[surface]
Show a given surface, represented as a matrix of z
values, in 3d.
4.6.16.1 For example
(plotly/surfacefor [i (range 100)]
(for [j (range 100)]
(-> (tcc/- [i j]
(30 60])
[20 50])
(tcc// [
tcc/sq
tcc/sum-
math/exp))))
4.6.17 splom
[dataset submap]
Show a SPLOM (ScatterPLOt Matrix) of given dimensions of a dataset.
๐ Main useful keys: :=dataset
:=colnames
:=color
:=color-type
and the other keys that affect :=layout
, especially :=height
and :=width
.
4.6.17.1 For example
-> datasets/iris
(:sepal-width
(plotly/splom {:=colnames [:sepal-length
:petal-width
:petal-length]
600
:=height 600})) :=width
-> datasets/iris
(:sepal-width
(plotly/splom {:=colnames [:sepal-length
:petal-width
:petal-length]
:species
:=color 600
:=height 600})) :=width
4.7 Stats ๐ฉ
4.7.1 histogram-stat
Compute a dataset representing the histogram of the :=x
column in :=dataset
.
The histogramโs binning and counting are computed using Fastmath.
The number of bins is specified by :histogram-nbins
.
If the grouping list of columns :=group
is specified, then the histogram is computed in groups.
by default depends on: :=dataset
:=group
:=x
:=histogram-nbins
4.7.2 density-stat
Compute a dataset representing the approximated density of the :=x
column in :=dataset
.
The density is estimated by Gaussian kernel density estimation using Fastmath.
The :=density-bandwidth
can controls the bandwidth. Otherwise, it is determined by a rule of thumb.
If the grouping list of columns :=group
is specified, then the density is estimated in groups.
๐ Main useful keys: :=density-bandwidth
:=dataset
:=x
:=color
:=color-type
:=mark-color
:=mark-size
:=mark-opacity
by default depends on: :=dataset
:=group
:=x
:=density-bandwidth
4.7.3 smooth-stat
Compute a dataset with the :=y
column in :=dataset
replaced with its value predicted by regression, and with the results ordered by the :=x
column.
The predictor columns are specified by :=design-matrix
and the regression model is specified by :=model-options
.
If the grouping list of columns :=group
is specified, then the regression is computed in groups.
by default depends on: :=dataset
:=x
:=y
:=predictors
:=group
:=design-matrix
:=model-options
4.8 Substitution Keys ๐
4.8.1 :=stat
role: The data resulting from a possible statistical transformation.
default: :=dataset
4.8.2 :=dataset
role: The data to be plotted.
default: NONE
4.8.3 :=x
role: The column for the x axis.
default: :x
4.8.4 :=x-after-stat
role: The column for the x axis to be used after :=stat
.
default: :=x
4.8.5 :=y
role: The column for the y axis.
default: :y
4.8.6 :=y-after-stat
role: The column for the y axis to be used after :=stat
.
default: :=y
4.8.7 :=z
role: The column for the z axis.
default: NONE
4.8.8 :=z-after-stat
role: The column for the z axis to be used after :=stat
.
default: :=z
4.8.9 :=x0
role: The column for the first x axis value, in cases where pairs are needed, e.g. segment layers.
default: NONE
4.8.10 :=x0-after-stat
role: The column for the first x axis value after :=stat
, in cases where pairs are needed, e.g. segment layers.
default: :=x0
4.8.11 :=y0
role: The column for the first y axis value, in cases where pairs are needed, e.g. segment layers.
default: NONE
4.8.12 :=y0-after-stat
role: The column for the first y axis value after :=stat
, in cases where pairs are needed, e.g. segment layers.
default: :=y0
4.8.13 :=x1
role: The column for the second x axis value, in cases where pairs are needed, e.g. segment layers.
default: NONE
4.8.14 :=x1-after-stat
role: The column for the second x axis value after :=stat
, in cases where pairs are needed, e.g. segment layers.
default: :=x1
4.8.15 :=y1
role: The column for the second y axis value, in cases where pairs are needed, e.g. segment layers.
default: NONE
4.8.16 :=y1-after-stat
role: The column for the second y axis value after :=stat
, in cases where pairs are needed, e.g. segment layers.
default: :=y1
4.8.17 :=bar-width
role: The column to determine the bar width in bar layers.
default: NONE
4.8.18 :=color
role: The column to determine the color of marks.
default: NONE
4.8.19 :=size
role: The column to determine the size of marks.
default: NONE
4.8.20 :=x-type
role: The field type of the column used to determine the x axis.
default: Check the field type of the column specified by :=x
after :=stat
.
:quantitative
- numerical columns:temporal
- date-time columns:nominal
- all other column types (e.g., Strings, keywords)
4.8.21 :=x-type-after-stat
role: The field type of the column used to determine the x axis after :=stat
.
default:
by default depends on: :=x-after-stat
:=x
:=x-type
:=stat
4.8.22 :=y-type
role: The field type of the column used to determine the y axis.
default: Check the field type of the column specified by :=y
after :=stat
.
:quantitative
- numerical columns:temporal
- date-time columns:nominal
- all other column types (e.g., Strings, keywords)
4.8.23 :=y-type-after-stat
role: The field type of the column used to determine the y axis after :=stat
.
default:
by default depends on: :=y-after-stat
:=y
:=y-type
:=stat
4.8.24 :=z-type
role: The field type of the column used to determine the z axis.
default: Check the field type of the column specified by :=z
after :=stat
.
:quantitative
- numerical columns:temporal
- date-time columns:nominal
- all other column types (e.g., Strings, keywords)
4.8.25 :=z-type-after-stat
role: The field type of the column used to determine the z axis after :=stat
.
default:
by default depends on: :=z-after-stat
:=z
:=z-type
:=stat
4.8.26 :=r
role: The column for the radius in polar coordinates.
default: NONE
4.8.27 :=theta
role: The column for the angle in polar coordinates.
default: NONE
4.8.28 :=lat
role: The column for the latitude in geo coordinates.
default: NONE
4.8.29 :=lon
role: The column for the longitude in geo coordinates.
default: NONE
4.8.30 :=color-type
role: The field type of the column used to determine mark color.
default: Check the field type of the column specified by :=color
after :=stat
.
:quantitative
- numerical columns:temporal
- date-time columns:nominal
- all other column types (e.g., Strings, keywords)
4.8.31 :=size-type
role: The field type of the column used to determine mark size
default: Check the field type of the column specified by :=size
after :=stat
.
:quantitative
- numerical columns:temporal
- date-time columns:nominal
- all other column types (e.g., Strings, keywords)
4.8.32 :=mark-color
role: A fixed color specification for marks.
default: NONE
4.8.33 :=mark-size
role: A fixed size specification for marks.
default: NONE
4.8.34 :=marker-size-key
role: What key does Plotly.js use to hold the marker size?
default: Determine which Plotly.js key should be used to specify the mark size. For lines, it is :width
. Otherwise, it is :size
.
4.8.35 :=mark-fill
role: A fixed fill specification for marks.
default: NONE
4.8.36 :=mark-opacity
role: A fixed opacity specification for marks.
default: NONE
4.8.37 :=text
role: The column to determine the text of marks (relevant for text layer).
default: NONE
4.8.38 :=textfont
role: Text font specification as defined in Plotly.js. See Text and oFnt Styling.
default: NONE
4.8.39 :=mark
role: The mark used for a layer (a Tablepot concept).
default: :point
4.8.40 :=mode
role: The Plotly.js mode used in a trace.
default: Determine the Plotly.js mode for a trace.
by default depends on: :=mark
4.8.41 :=type
role: The Plotly.js type used in a trace.
default: Determine the Plotly.js type for a trace.
by default depends on: :=mark
:=coordinates
4.8.42 :=name
role: The layer name (which affects the Plotly.js traces names).
default: NONE
4.8.43 :=layers
role: A vector of all lyaers in the plot (an inermediate Tableplot representation before converting to Plotly.js traces).
default: []
4.8.44 :=traces
role: A vector of all Plotly.js traces in the plot.
default: Create the Plotly.js traces from the Tableplot layers.
by default depends on: :=layers
4.8.45 :=layout
role: The layout part of the resulting Plotly.js specification.
default: Create the layout part of the Plotly.js specification.
by default depends on: :=width
:=height
:=margin
:=automargin
:=background
:=title
:=xaxis-gridcolor
:=yaxis-gridcolor
:=x-after-stat
:=y-after-stat
:=x-title
:=y-title
:=x-showgrid
:=y-showgrid
:=boxmode
:=violinmode
:=layers
4.8.46 :=inferred-group
role: A list of columns to be used for grouping of statistical computations, inferred from other keys and data (e.g., :=color
).
default: Infer the relevant grouping for statistical layers such as layer-smooth
. The :=color
column affects the grouing if and only if :=color-type
is :nominal
. The :=size
column affects the grouing if and only if :=size-type
is :nominal
.
by default depends on: :=color
:=color-type
:=size
:=size-type
4.8.47 :=group
role: A list of columns to be used for grouping of statisticsl computations, a possible user override of :=inerred-group
.
default: :=inferred-group
4.8.48 :=predictors
role: The list of predictors to be used in regression (layer-smooth
).
default: [:=x]
4.8.49 :=design-matrix
role: The design matrix definition to be used in regression (layer-smooth
).
default: Determine a trivial design matrix specifiation from a set of :=predictors
columns. The design matrix simply uses these columns without any additional transformation.
by default depends on: :=predictors
4.8.50 :=model-options
role: The optional specification of a model for regression (layer-smooth
).
default: {:model-type :fastmath/ols}
4.8.51 :=histogram-nbins
role: The number of bins for layer-histogram
.
default: 10
4.8.52 :=density-bandwidth
role: The bandwidth of density estimation for layer-density
.
default: NONE
4.8.53 :=box-visible
role: Should the boxplot be visible in Violin plots? (boolean)
default: NONE
4.8.54 :=meanline-visible
role: Should the mean line be visible in Violin plots? (boolean)
default: NONE
4.8.55 :=boxmode
role: How to show a group of box plots? The default is nil
, which means overlay. The alternative is :group
.
default: NONE
4.8.56 :=violinmode
role: How to show a group of violin plots? The default is nil
, which means overlay. The alternative is :group
.
default: NONE
4.8.57 :=coordinates
role: The coordinates to use: :2d
/:3d
/:polar
/:geo
.
default: :2d
4.8.58 :=height
role: The plotโs height.
default: 400
4.8.59 :=width
role: The plotโs width.
default: 500
4.8.60 :=margin
role: Plotly.js margin specification. See Setting Graph Size in Javaspcrit.
default: {:t 25}
4.8.61 :=automargin
role: Should Plotly.js margins be automatically adjusted? See Setting Graph Size in Javaspcrit.
default: false
4.8.62 :=x-title
role: The title for x axis.
default: NONE
4.8.63 :=y-title
role: The title for y axis.
default: NONE
4.8.64 :=title
role: The plot title.
default: NONE
4.8.65 :=x-showgrid
role: Should we show the grid for the x axis?
default: true
4.8.66 :=y-showgrid
role: Should we show the grid for the y axis?
default: true
4.8.67 :=background
role: The plot background color.
default: "rgb(235,235,235)"
4.8.68 :=xaxis-gridcolor
role: The color for the x axis grid lines.
default: "rgb(255,255,255)"
4.8.69 :=yaxis-gridcolor
role: The color for the y axis grid lines.
default: "rgb(255,255,255)"
4.8.70 :=colnames
role: Column names for a SPLOM plot.
default: NONE
4.8.71 :=splom-layout
role: The layout for a SPLOM plot.
default: Create the layout for a SPLOM plot.
by default depends on: :=layout
:=colnames
4.8.72 :=splom-traces
role: The trace for a SPLOM plot.
default: Create the trace for a SPLOM plot.
by default depends on: :=dataset
:=colnames
:=color
:=color-type
:=splom-colnames