clj-djl.training.loss

evaluate

(evaluate loss label pred)

hinge

(hinge)(hinge name)(hinge name margin weight)

The hinge loss is used for maximum-margin classification.

hinge-loss

l1

(l1)(l1 name)(l1 name weight)

Least absolute deviations loss function minimizes the absolute differences between the estimated values and the existing target values.

l1-loss

l2

(l2)(l2 name)(l2 name weight)

Least square errors loss function minimizes the squared differences between the estimated and existing target values.

l2-loss

masked-softmax-cross-entropy

(masked-softmax-cross-entropy)(masked-softmax-cross-entropy name)(masked-softmax-cross-entropy name weight class-axis sparse-label from-logit)

masked-softmax-cross-entropy-loss

sigmoid-binary-cross-entropy

(sigmoid-binary-cross-entropy)(sigmoid-binary-cross-entropy name)(sigmoid-binary-cross-entropy name weight from-sigmoid)

sigmoid-binary-cross-entropy-loss

sotfmax-cross-entropy

(sotfmax-cross-entropy)(sotfmax-cross-entropy name)(sotfmax-cross-entropy name weight class-axis sparse-label from-logit)

sotfmax-cross-entropy-loss